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ABSTRACT
Using a novel evaluation toolkit that simulates a human re-
viewer in the loop, we compare the effectiveness of three
machine-learning protocols for technology-assisted review as
used in document review for discovery in legal proceedings.
Our comparison addresses a central question in the deploy-
ment of technology-assisted review: Should training docu-
ments be selected at random, or should they be selected
using one or more non-random methods, such as keyword
search or active learning? On eight review tasks – four de-
rived from the TREC 2009 Legal Track and four derived
from actual legal matters – recall was measured as a func-
tion of human review effort. The results show that entirely
non-random training methods, in which the initial train-
ing documents are selected using a simple keyword search,
and subsequent training documents are selected by active
learning, require substantially and significantly less human
review effort (P < 0.01) to achieve any given level of recall,
than passive learning, in which the machine-learning algo-
rithm plays no role in the selection of training documents.
Among passive-learning methods, significantly less human
review effort (P < 0.01) is required when keywords are used
instead of random sampling to select the initial training doc-
uments. Among active-learning methods, continuous active
learning with relevance feedback yields generally superior
results to simple active learning with uncertainty sampling,
while avoiding the vexing issue of “stabilization” – determin-
ing when training is adequate, and therefore may stop.

Categories and Subject Descriptors: H.3.3 Information
Search and Retrieval: Search process, relevance feedback.

Keywords: Technology-assisted review; predictive coding;
electronic discovery; e-discovery.
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1. INTRODUCTION
The objective of technology-assisted review (“TAR”) in

electronic discovery (“e-discovery”)1 is to find as nearly all
of the relevant documents in a collection as possible, with
reasonable effort. While this study does not presume to
interpret the common-law notion of what is reasonable, it
serves to quantify the tradeoff between how nearly all of the
relevant documents can be found (as measured by recall),
and the human effort needed to find them (as measured by
the number of documents that must be manually reviewed,
which translates into time and cost).

In a typical review task, a “requesting party” prescribes
relevance2 by way of a “request for production,” while the
“responding party,” its adversary, is required to conduct a re-
view and produce the responsive, non-privileged documents
identified as a result of a reasonable search. A study by
Grossman and Cormack [8] shows that two TAR methods
can be both more effective and more efficient than tradi-
tional e-discovery practice, which typically consists of key-
word or Boolean search, followed by manual review of the
search results. One of these methods, due to Cormack and
Mojdeh [7], employs machine learning in a protocol we re-
fer to as Continuous Active Learning (“CAL”). The other
method, due to H5 [13], does not employ machine learning,
and therefore is not considered in this study.

Often relying on Grossman and Cormack for support,
many legal service providers have advanced TAR tools and
methods that employ machine learning, but not the CAL
protocol. These tools and methods, often referred to in the
legal marketplace as “predictive coding,” follow one of two
protocols which we denote Simple Active Learning (“SAL”)
and Simple Passive Learning (“SPL”). Some tools that em-
ploy SAL have achieved superior results at TREC, but have
never, in a controlled study, been compared to CAL. Tools
that use SPL, while widely deployed, have not achieved su-
perior results at TREC, and have not, in a controlled study,
been compared to traditional methods, to SAL, or to CAL.

1See Grossman and Cormack [10] for a glossary of terms per-
taining to TAR. See Oard and Webber [16] for an overview
of information retrieval for e-discovery.
2The IR term “relevant” generally describes a document
sought by an information-retrieval effort, while the legal
term “responsive” describes a document that satisfies the
criteria set forth in a request for production. In this study,
the terms are used interchangeably; however, in the context
of litigation, relevance may take on a broader meaning than
responsiveness.
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This study compares CAL, SAL, and SPL, and makes
available a TAR evaluation toolkit3 to facilitate further com-
parisons. The results show SPL to be the least effective TAR
method, calling into question not only its utility, but also
commonly held beliefs about TAR. The results also show
that SAL, while substantially more effective than SPL, is
generally less effective than CAL, and as effective as CAL
only in a best-case scenario that is unlikely to be achieved
in practice.

2. THE TAR PROCESS
The TAR process, in the abstract, proceeds as follows.

Given a document collection and a request for production,
a human operator uses one or more tools to identify docu-
ments to be shown to one or more human reviewers, who
may or may not be the same individual as the operator.
The reviewers examine these documents and label (“code”)
them each as responsive or not. More documents are iden-
tified using the tools, reviewed and coded by reviewers, and
the process continues until “enough” of the responsive docu-
ments have been reviewed and coded. How many constitute
“enough” is a legal question, which is informed by how much
additional effort would likely be required to find more re-
sponsive documents, and how important those documents
would likely be in resolving the legal dispute (i.e., “propor-
tionality considerations”). For our purposes, we consider
the process to continue indefinitely, and track the number
of responsive documents found (i.e., recall) as a function of
effort (i.e., the number of documents reviewed and coded
by reviewers). Using this information, the reader can de-
termine retrospectively, for any definition of “enough,” how
much effort would have sufficed to find enough documents.

For this study, the operator is assumed to follow a strict
protocol. All choices, including what tools are used, and
when and how they are used, are prescribed by the protocol.
In addition to satisfying the requirements for a controlled
comparison, the use of a strict protocol may be appealing
in the e-discovery context because the requesting party may
distrust, and therefore wish to prohibit discretionary choices
made by the operator on behalf of the responding party. The
reviewers are assumed to code the documents they review in
good faith, to the best of their abilities. In light of Grossman
and Cormack [8, 9], and others [4, 18, 25, 26], it is unrealistic
to assume the reviewers to be infallible – they will necessar-
ily, but inadvertently, code some responsive documents as
non-responsive, and vice versa.

The CAL protocol involves two interactive tools: a key-
word search system and a learning algorithm. At the outset
of the TAR process, the operator typically uses a keyword
search to identify an initial set of documents to be reviewed
and coded. These coded documents (often referred to as
the “seed set”) are used to train a learning algorithm, which
scores each document in the collection by the likelihood that
it is responsive. The top-scoring documents that have not
yet been coded are then reviewed and coded by reviewers.
The set of all documents coded thus far (the “training set”)
is used to train the learning algorithm, and the process of se-
lecting the highest-scoring documents, reviewing and coding
them, and adding them to the training set continues until
“enough” of the responsive documents have been found.

3Available at http://cormack.uwaterloo.ca/cormack/tar-
toolkit.

The SAL protocol, like CAL, begins with the creation of
a seed set that is used to train a learning algorithm. The
seed set may be selected using keywords, random section, or
both, but, unlike CAL, the subsequent training documents
to be reviewed and coded are selected using uncertainty sam-
pling [15], a method that selects the documents about which
the learning algorithm is least certain. These documents are
added to the training set, and the process continues until the
benefit of adding more training documents to the training
set would be outweighed by the cost of reviewing and cod-
ing them (a point often referred to as “stabilization”). At
this point, the learning algorithm is used for the last time
to create either a set or a ranked list of likely relevant doc-
uments (the “review set”), which is subsequently reviewed
and coded by reviewers.

The SPL protocol, unlike CAL or SAL, generally relies
on the operator or random selection, and not the learning
algorithm, to identify the training set. The process is typ-
ically iterative. Once a candidate training set is identified,
the learning algorithm is then trained on these documents
and used to create a candidate review set. If the review set
is “inadequate,” the operator creates a new candidate train-
ing set, generally by adding new documents that are found
by the operator, or through random selection. The process
continues until the review set is deemed “adequate,” and is
subsequently reviewed and coded by reviewers.

The TAR process addresses a novel problem in informa-
tion retrieval, which we denote here as the “TAR Problem.”
The TAR Problem differs from well-studied problems in ma-
chine learning for text categorization [21] in that the TAR
process typically begins with no knowledge of the dataset
and continues until most of the relevant documents have
been identified and reviewed. A classifier is used only inci-
dentally for the purpose of identifying documents for review.
Gain is the number of relevant documents presented to the
human during training and review, while cost is the total
number of relevant and non-relevant documents presented
to the human during training and review.

3. SIMULATING REVIEW
To simulate the application of a TAR protocol to a review

task, we require a realistic document collection and request
for production, a keyword query (“seed query”) to be used
(if required by the protocol), and a simulated reviewer. To
evaluate the result, we require a “gold standard” indicating
the true responsiveness of all, or a statistical sample, of the
documents in the collection.

Four review tasks, denoted Matters 201, 202, 203, and
207, were derived from Topics 201, 202, 203, and 207 of the
TREC 2009 Legal Track Interactive Task – the same Top-
ics that were used to evaluate Cormack and Mojdeh’s CAL
efforts at TREC [7, 12]. Four other review tasks, denoted
Matters A, B, C, and D, were derived from actual reviews
conducted in the course of legal proceedings. Statistics for
the collections are provided in Table 1, and the requests for
production are shown in Table 2.

The seed queries for the tasks derived from TREC, shown
in Table 3, were composed by Open Text in the course of
its participation in the TREC 2010 Legal Track Learning
Task (which used the same topics as the TREC 2009 Legal
Track Interactive Task), using a strategy that “attempted to
quickly create [a] Boolean query for each topic” [24, page 5].
The seed queries for the tasks derived from legal proceedings,
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Matter Collection Size # Rel. Docs. Prevalence (%)
201 723,537 2,454 0.34
202 723,537 9,514 1.31
203 723,537 1,826 0.25
207 723,537 8,850 1.22
A 1,118,116 4,001 0.36
B 409,277 6,236 1.52
C 293,549 1,170 0.48
D 405,796 15,926 3.92

Table 1: Collection statistics.

Matter Request for Production
201 All documents or communications that

describe, discuss, refer to, report on, or relate
to the Company’s engagement in structured
commodity transactions known as prepay
transactions.

202 All documents or communications that
describe, discuss, refer to, report on, or relate
to the Company’s engagement in transactions
that the Company characterized as compliant
with FAS 140 (or its predecessor FAS 125).

203 All documents or communications that
describe, discuss, refer to, report on, or relate
to whether the Company had met, or could,
would, or might meet its financial forecasts,
models, projections, or plans at any time after
January 1, 1999.

207 All documents or communications that
describe, discuss, refer to, report on, or relate
to fantasy football, gambling on football, and
related activities, including but not limited to,
football teams, football players, football games,
football statistics, and football performance.

A [Regulatory request]
B [Regulatory request]
C [Third-party subpoena]
D [Regulatory request]

Table 2: Requests for production.

described in Table 3, were composed by or negotiated with
the requesting party prior to the review process. The recall
and precision of each of the seed queries (as measured with
respect to the gold standard, discussed below) are shown in
Table 3.

To simulate a reviewer, we use a “training standard” that
consists of a relevance assessment for each document in the
collection. If, during the course of simulating a particu-
lar review protocol, the reviewer is called upon to code a
document, the assessment from the training standard – re-
sponsive or not responsive – is used for this purpose. The
training standard does not represent ground truth; instead,
it represents the coding decision that a fallible reviewer
might render when presented with the document for review.
For all of the simulated tasks, all of the positive training-
standard assessments, and some of the negative assessments,
were rendered by a reviewer during the course of a prior re-
view. For the TREC-derived tasks, we used Cormack and

Matter Seed Query Recall Prec.
201 "pre-pay" OR "swap" 0.436 0.038
202 "FAS" OR "transaction" OR

"swap" OR "trust" OR

"Transferor" OR

"Transferee"

0.741 0.090

203 "forecast" OR "earnings"

OR "profit" OR "quarter"

OR "balance sheet"

0.872 0.034

207 "football" OR "eric bass" 0.492 0.167
A [7-term Boolean query] 0.545 0.045
B [98-term Boolean query] 0.991 0.019
C [46-term Boolean query] 0.259 0.026
D [9-term Boolean query] 0.945 0.325

Table 3: Keyword seed queries and their associated
recall and precision.

Matter
Training Standard
Recall Precision

201 0.843 0.911
202 0.844 0.903
203 0.860 0.610
207 0.896 0.967
A 1.000 0.307
B 0.942 0.974
C 1.000 0.429
D 0.961 1.000

Table 4: Recall and precision for the training stan-
dard used to simulate human review.

Mojdeh’s TREC submissions;4 for the legal-matter-derived
tasks, we used the coding rendered by the first-pass reviewer
in the course of the review. Documents that were never seen
by the first-pass reviewer (because they were never identi-
fied as potentially responsive) were deemed to be coded as
non-responsive. Overall, as measured with respect to the
gold standard, the recall and precision of the training stan-
dard (shown in Table 4) indicate that the simulated reviewer
achieves a high-quality – but far from perfect – result, by
human review standards.

In contrast to the training standard, the gold standard
represents ground truth. For the TREC-derived tasks, the
gold standard consists of a stratified random sample, as-
sessed by TREC using a two-stage adjudication process [12].
For the legal-matter-derived tasks, the gold standard con-
sists of the documents produced to the requesting party, af-
ter a second-pass review and quality-assurance efforts. Each
document in the gold standard is associated with an inclu-
sion probability – the prior probability that it would have
been included in the gold standard. Following TREC prac-
tice, the recall of any simulated review is estimated using
the Horvitz-Thompson estimator [14], which weights each
gold-standard document by the reciprocal of its inclusion
probability.

Evaluation results are presented in two ways: as gain
curves and as 75% recall-effort (“75% RE”) values. A gain
curve plots recall as a function of the number of documents
reviewed. For any level of effort (as measured by the number

4Available at http://trec.nist.gov/results.html, sub-
ject to a usage agreement.
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of documents reviewed), one can determine at a glance the
recall that would be achieved, using a particular protocol, for
that level of effort (see Figures 1 and 2 below). Conversely,
for any recall level it is possible to determine what level of
effort would be required to achieve that recall level. For the
purpose of quantitative comparison, we tabulate 75% RE for
all protocols (see Tables 5 and 6 below).

4. TAR PROTOCOLS
In this study, we used the same feature engineering

and learning algorithm for every protocol, without any
collection- or task-specific tuning. Following Cormack and
Mojdeh [7], the first 30,000 bytes of the ASCII text represen-
tation of each document (including a text representation of
the sender, recipient, cc or bcc recipients, subject, and date
and time sent) was shingled as overlapping 4-byte segments.
The number of distinct possible segments was reduced, by
hashing, from 232 = 4, 294, 967, 296 to 1, 000, 081 (an arbi-
trarily chosen prime number near one million). Each feature
consisted of a binary value: “1” if the feature was present in
the first 30,000 bytes of the document; “0” if it was absent.
For the learning algorithm, we used the Sofia-ML imple-
mentation of Pegasos SVM,5 with the following parameters:
“--iterations 2000000 --dimensionality 1100000.”

For all protocols, we used a batch size of 1,000 documents.
That is, the initial training set (the seed set) was 1,000 doc-
uments, and each iteration, whether CAL, SAL, or SPL,
involved reviewing 1,000 documents and, if indicated by the
protocol, adding them to the training set. Our primary ex-
periments evaluated the specific formulations of CAL, SAL,
and SPL described in Section 2; secondary experiments ex-
plored the effect of using keyword-selected versus randomly
selected documents for the seed and training sets.

Our primary CAL implementation used, as the initial
training set, 1,000 documents, randomly selected from the
results of a search using the seed query. In each iteration, the
training-set documents were coded according to the training
standard, then used to train Sofia-ML, and hence to score
the remaining documents in the collection. The 1,000 top-
scoring documents were added to the training set, and the
process was repeated 100 times.

Our primary SAL implementation used exactly the same
1,000-document keyword-selected seed set as CAL. Like
CAL, in each iteration, the training-set documents were
coded according to the training standard, then used to train
Sofia-ML, and hence to score the remaining documents in
the collection. These documents, ranked by score, constitute
a candidate review set. Rather than implementing the deci-
sion as to whether stabilization had occurred, we recorded
the candidate review set for future retrospective evaluation,
and continued the training process. Unlike CAL, the 1,000
documents with the least magnitude scores were coded and
added to the training set, and the process was repeated 100
times. In the end, the simulation yielded 100 different can-
didate review sets, corresponding to stabilization having oc-
curred with a training-set size of 1,000, 2,000, ..., 100,000
documents. Each training-set size, when evaluated, yields a
different gain curve, and a different 75% RE. Due to space
considerations, we show gain curves only for the representa-
tive training-set sizes of 2,000, 5,000, and 8,000 documents.
We report 75% RE for these three training-set sizes, as well

5Available at http://code.google.com/p/sofia-ml.

as for the ideal training-set size, which in reality would not
be known, since it requires the benefit of hindsight. The
ideal training-set size is derived using the gold standard;
75% RE is calculated for every training-set size, and the
lowest value is chosen.

Our primary SPL implementation used random selection
throughout, as advocated by some SPL proponents. The
initial training set (which we denote the “seed set,” notwith-
standing the fact that many SPL proponents use the same
term to refer to the final training set) consisted of 1,000
randomly selected documents, and each iteration added
1,000 more randomly selected documents. As for SAL, we
recorded the candidate review set after each iteration, and
report gain curves for the representative training-set sizes of
2,000, 5,000, and 8,000 documents, as well as 75% RE for
these training-set sizes, and for the ideal training-set size,
as defined above.

Variants of these protocols, for which we report 75% RE,
include using randomly selected documents as a seed set for
CAL and SAL, using a keyword-selected seed set for SPL,
and using an entirely keyword-selected training set for SPL.

5. PRIMARY RESULTS
As illustrated in Figure 1, the CAL protocol achieves

higher recall than SPL, for less effort, for all of the repre-
sentative training-set sizes. All eight graphs show the same
basic result: After the first 1,000 documents (i.e., the seed
set), the CAL curve shows a high slope that is sustained un-
til the majority of relevant documents have been identified.
At about 70% recall, the slope begins to fall off noticeably,
and effectively plateaus between 80% and 100% recall. The
SPL curve exhibits a low slope for the training phase, fol-
lowed by a high slope, falloff, and then a plateau for the
review phase. In general, the slope immediately following
training is comparable to that of CAL, but the falloff and
plateau occur at substantially lower recall levels. While the
initial slope of the curve for the SPL review phase is simi-
lar for all training-set sizes, the falloff and plateau occur at
higher recall levels for larger training sets. This advantage
of larger training sets is offset by the greater effort required
to review the training set: In general, the curves for differ-
ent training sets cross, indicating that a larger training set
is advantageous when high recall is desired.

75% recall effort, shown in Table 5, illustrates the superi-
ority of CAL over SPL, even when SPL is afforded the bene-
fit of hindsight to choose the ideal training-set size. A simple
sign test shows with statistical significance (P < 0.01) that
CAL is superior to SPL according to 75% RE, and also ac-
cording to recall effort for any other level of recall.

Figure 2 shows that the CAL protocol generally achieves
higher recall than SAL. However, the SAL gain curves, un-
like the SPL gain curves, often touch the CAL curves at
one specific inflection point. The strong inflection of the
SAL curve at this point is explained by the nature of un-
certainty sampling: Once stabilization occurs, the review
set will include few documents with intermediate scores, be-
cause they will have previously been selected for training.
Instead, the review set will include primarily high-scoring
and low-scoring documents. The high-scoring documents
account for the high slope before the inflection point; the
low-scoring documents account for the low slope after the
inflection point; the absence of documents with intermedi-
ate scores accounts for the sharp transition. The net effect
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Figure 1: Continuous Active Learning versus Simple Passive Learning using three different training-set sizes
of randomly selected documents.
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Figure 2: Continuous Active Learning versus Simple Active Learning using three different training-set sizes
of uncertainty-sampled documents.
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Matter
CAL SAL SPL

Training Set Size Training Set Size
2K 5K 8K Ideal 2K 5K 8K Ideal

201 6 237 7 10 7 284 331 164 56
202 11 34 12 14 12 47 29 26 26
203 6 43 7 10 6 521 331 154 99
207 11 55 23 13 13 103 50 36 35
A 11 210 42 12 12 502 326 204 85
B 8 119 10 11 10 142 41 21 20
C 4 5 8 10 5 9 8 10 7
D 18 60 54 53 18 55 38 37 37

Table 5: 75% Recall Effort for Primary Results (measured in terms of thousands of documents reviewed).
Bold numbers reflect the least possible effort to achieve the target recall of 75%.

Matter
CAL CAL-seedran SAL SAL-seedran SPL SPL-seedkey SPL-allkey

Training Set Size Training Set Size
Ideal Ideal Ideal Ideal Ideal

201 6 6 7 8 56 36 43
202 11 12 12 12 26 23 20
203 6 637 6 614 99 26 16
207 11 12 13 13 35 26 16
A 11 15 12 15 85 79 66
B 8 10 10 10 20 19 39
C 4 4 5 4 7 6 9
D 18 19 18 19 37 28 34

Table 6: 75% Recall Effort for Primary and Supplemental Results (measured in terms of thousands of
documents reviewed). Bold numbers reflect the least possible effort to achieve the target recall of 75%.

is that SAL achieves effort as low as CAL only for a specific
recall value, which is easy to see in hindsight, but difficult
to predict at the time of stabilization.

Table 5 illustrates the sensitivity of the SAL and SPL
results to training-set size, and hence the difficulty of choos-
ing the precise training-set size to achieve 75% recall with
minimal effort.

6. SUPPLEMENTAL RESULTS
To assess the role of keyword versus random selection at

various stages of the training process, we evaluated the fol-
lowing variants of the primary protocols: (i) CAL-seedran,
in which the seed set was selected at random from the en-
tire collection; (ii) SAL-seedran, in which the seed set was
selected at random from the entire collection; (iii) SPL-
seedkey, in which the initial 1,000 training documents were
the same keyword-selected seed set used for CAL and SAL
in the primary protocols; and (iv) SPL-allkey, in which all
training examples were selected at random from the results
of the keyword seed query. 75% recall effort (with ideal
training-set sizes, where applicable) for these variants, as
well as the primary protocols, is shown in Table 6.

A comparison of the results for CAL and CAL-seedran
shows that a random seed set generally yields the same or
slightly inferior results to a keyword-selected seed set. In
one case – Matter 203 – the random seed set fails spectac-
ularly. The collection for this task has very low prevalence
(0.25%), and the seed set of 1,000 random documents con-
tained only two responsive documents, which were insuffi-
cient to “kick-start” the active-learning process. A compari-
son of the results for SAL and SAL-seedran shows the same

general effect, including the degraded performance caused
by random seeding for Matter 203.

A comparison of the results for SPL and SPL-seedkey
shows that, as for CAL and SAL, the use of keyword se-
lection for the initial training set generally yields superior
results to random selection. A comparison of the results
for SPL and SPL-allkey shows that, with two exceptions,
keyword selection for the entire training set is superior to
random selection. However, a comparison of the results
for SPL-seedkey and SPL-allkey shows neither to be con-
sistently superior; in four cases, using keywords for only the
initial training set was superior, and in four cases, using
keywords for the entire training set was superior.

In summary, the use of a seed set selected using a simple
keyword search, composed prior to the review, contributes
to the effectiveness of all of the TAR protocols investigated
in this study.

7. DISCUSSION

7.1 Random vs. Non-Random Training
The results presented here do not support the commonly

advanced position that seed sets, or entire training sets,
must be randomly selected [19, 28] [contra 11]. Our pri-
mary implementation of SPL, in which all training docu-
ments were randomly selected, yielded dramatically inferior
results to our primary implementations of CAL and SAL,
in which none of the training documents were randomly se-
lected. While it is perhaps no surprise to the information
retrieval community that active learning generally outper-
forms random training [22], this result has not previously
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been demonstrated for the TAR Problem, and is neither
well known nor well accepted within the legal community.

Perhaps more surprising is the fact that a simple keyword
search, composed without prior knowledge of the collection,
almost always yields a more effective seed set than random
selection, whether for CAL, SAL, or SPL. Even when key-
word search is used to select all training documents, the
result is generally superior to that achieved when random
selection is used. That said, even if passive learning is en-
hanced using a keyword-selected seed or training set, it is
still dramatically inferior to active learning. It is possible, in
theory, that a party could devise keywords that would ren-
der passive learning competitive with active learning, but
until a formal protocol for constructing such a search can
be established, it is impossible to subject the approach to a
controlled scientific evaluation. Pending the establishment
and scientific validation of such a protocol, reliance on key-
words and passive learning remains a questionable practice.
On the other hand, the results reported here indicate that
it is quite easy for either party (or for the parties together)
to construct a keyword search that yields an effective seed
set for active learning.

The principal argument in favor of random selection ap-
pears to be the concern that non-randomly selected training
examples are “less than representative of the entire popula-
tion of relevant documents” [19, pages 260-261], and there-
fore might “bias” the learning method, resulting in the ex-
clusion of certain classes of relevant documents. It is easy to
imagine that such an effect might occur with SPL; however,
it is more difficult to imagine how such a bias could persist
through the CAL process.

There are situations in which a finite random sample used
as a training set could exclude an identifiable population of
relevant documents. By way of example, consider a collec-
tion consisting of 1,000,000 emails and 100,000 spreadsheets,
of which 10,000 emails and 1,000 spreadsheets were relevant.
A random training set consisting of 1,100 documents would
contain about 1,000 emails, of which about 10 were relevant,
and about 100 spreadsheets, of which, as likely as not, none
would be relevant. A machine-learning method might well
infer that spreadsheets generally were not relevant, thereby
exhibiting a blind spot. Random training tends to be bi-
ased in favor of commonly occurring types of relevant doc-
uments, at the expense of rare types. Non-random training
can counter this bias by uncovering relevant examples of rare
types of documents that would be unlikely to appear in a
random sample.

7.2 Continuous vs. Simple Active Learning
The differences between the CAL and SAL results arise,

we believe, from differences in the design objectives underly-
ing their training methods. The underlying objective of CAL
is to find and review as many of the responsive documents
as possible, as quickly as possible. The underlying objective
of SAL, on the other hand, is to induce the best classifier
possible, considering the level of training effort. Generally,
the classifier is applied to the collection to produce a re-
view set, which is then subject to manual review.6 The use
of SAL raises the critical issues of (i) what is meant by the
“best”classifier, and (ii) how to determine the point at which

6In some circumstances – which have not been considered
in this study – the review set may be produced to the re-
questing party without any subsequent review.

the best classifier has been achieved (commonly referred to
as “stabilization” in the context of TAR). In this study, we
arbitrarily define “best” to minimize the total training and
review effort necessary to achieve 75% recall, and sidestep
the stabilization issue by affording SAL the luxury of an
oracle that determines immediately, perfectly, and without
cost, when stabilization occurs. In practice, defining and de-
tecting stabilization for SAL (and also for SPL) is “[p]erhaps
the most critical question attendant to the use of technology-
assisted review for the production of documents” [19, page
263]. In practice, recall and precision of candidate review
sets are typically estimated using sampling, and stabiliza-
tion is deemed to occur when an aggregate measure, such as
F1, appears to be maximized [17]. The choice of a suitable
criterion for stabilization, and the cost and uncertainty of
sampling to determine when that criterion has been met [3],
are fundamental challenges inherent in the use of SAL and
SPL that are not addressed in this study; instead, SAL and
SPL have been given the benefit of the doubt.

With CAL, each successive classifier is used only to iden-
tify – from among those documents not yet reviewed – the
next batch of documents for review. How well it would have
classified documents that have already been reviewed, how
well it would have classified documents beyond the batch
selected for review, or how well it would have classified an
independent, identically distributed sample of documents, is
irrelevant to this purpose. Once it has served this narrow
purpose, the classifier is discarded and a new one is cre-
ated. Because the TAR process continues until as many as
possible of the relevant documents are found, the nature of
the of documents to which successive classifiers are applied
drifts dramatically, as the easy-to-find relevant documents
are exhausted and the harder-to-find ones are sought.

For SAL, where training is stopped well before the review
is complete, we observed informally that uncertainty sam-
pling was superior to relevance feedback, consistent with
previously reported results in machine learning for text cat-
egorization [15]. For CAL, our results indicate relevance
feedback to be superior.

7.3 When to Terminate the Review
Regardless of the TAR protocol used, the question re-

mains: When to terminate the review? The answer
hinges on the proportionality considerations outlined in
(U.S.) Federal Rules of Civil Procedure 26(b)(2)(C) and
26(g)(1)(B)(iii), which, respectively, limit discovery if “the
burden or expense of the proposed discovery outweighs its
likely benefit, considering the needs of the case, the amount
in controversy, the parties’ resources, the importance of the
issues at stake in the action, and the importance of the dis-
covery in resolving the issues,” and require that discovery be
“neither unreasonable nor unduly burdensome or expensive,
considering the needs of the case, prior discovery in the case,
the amount in controversy, and the importance of the issues
at stake in the action.”

Whether the termination point is determined at stabi-
lization (as for SAL and SPL), or deferred (as for CAL),
eventually a legal decision must be made that a reasonable
review has been conducted, and that the burden or expense
of continuing the review would outweigh the benefit of any
additional documents that might be found. The density of
responsive documents discovered by CAL appears to fall off
monotonically, thus informing the legal decision maker how
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much effort would be necessary to find more documents;
moreover, Cormack and Mojdeh [7] note that the scores of
the responsive documents tend to a normal distribution, and
that by fitting such a distribution to the scores, it is possi-
ble to estimate recall without resorting to sampling. That
said, we leave to future research the issue of how best to
determine when to stop.

7.4 Imperfect Training
It has been argued that the accuracy of the human review

of the training set is critical, and that a “senior partner”
[1, page 184], or even a bi-party committee, should review
the training documents [2, page 7]. While the existing sci-
entific literature indicates this concern to be overstated [6,
20, 27], our results further confirm that superior results can
be achieved using a single, fallible reviewer. That said, a
limitation of our evaluation toolkit is that our simulated re-
viewer always codes a given document the same way; a real
reviewer would be influenced by factors such as the preva-
lence of responsive documents among those reviewed [23],
the order in which the documents were reviewed, and any
number of other human factors. We conjecture that these
factors would tend to benefit CAL over the other protocols
because: (i) the prevalence of responsive documents among
those reviewed would be higher, especially at the outset of
the review; (ii) similar documents would tend to be reviewed
together by virtue of having similar scores; and (iii) the re-
viewer would gain early insight into the nature of respon-
sive documents without having to wade through a haystack
of random or marginal documents looking for an unfamiliar
needle. Knowledge of the legally significant documents early
in the review process is valuable in its own right. We leave
it to future research to confirm or refute our conjecture.

7.5 Limitations
The prevalence of responsive documents in the eight re-

view tasks varies from 0.25% to 3.92%, which is typical for
the legal matters with which we have been involved. Others
assert that these are examples of “low-prevalence” or “low-
richness” collections, for which TAR is unsuitable [19]. We
suggest that such assertions may presuppose an SPL proto-
col [11], which is not as effective on low-prevalence datasets.
It may be that SPL methods can achieve better results on
higher-prevalence collections (i.e., 10% or more responsive
documents). However, no such collections were included
in this study because, for the few matters with which we
have been involved where the prevalence exceeded 10%, the
necessary training and gold-standard assessments were not
available. We conjecture that the comparative advantage of
CAL over SPL would be decreased, but not eliminated, for
high-prevalence collections.

Our evaluation toolkit embodies a number of design
choices, the effects of which remain to be explored. Our
choices for feature engineering and learning algorithm are
state of the art for text classification [5, chapter 11], and
we have no indication that another choice would yield ma-
terially different results. We reprised most of the experi-
ments in this study using logistic regression, instead of SVM,
achieving similar results. A näıve Bayes classifier, on the
other hand, achieved generally inferior results overall, but
the same relative effectiveness among the protocols. A full
exploration of feature engineering and classifier choices re-
mains the subject of future research.

Finally, our use of a batch size of 1,000 was occasioned
by efficiency considerations. In each of 100 iterations, we
augmented the training set by 1,000 documents, trained the
classifier, and scored every document in the collection. Each
simulation required several hours of computation; the study
required several weeks. For the CAL protocol only, we re-
ran the simulations using a batch size of 100 – entailing ten
times as much computation (i.e., several days per simula-
tion) – and achieved slightly better results. The effect of
even smaller batch sizes on the effectiveness of TAR proto-
cols remains an open question.

8. CONCLUSION
While the mechanisms and efficacy of active machine

learning are well known to the information retrieval com-
munity, the legal community has been slow to adopt such
technologies, which could help address the growing volume
of electronically stored information in (U.S.) legal proceed-
ings. Much of the resistance, we submit, is due to lack of
awareness of differences among TAR methods and protocols,
and over generalization from one TAR method (typically, a
variant of SPL) to all TAR.

Because SPL can be ineffective and inefficient, particularly
with the low-prevalence collections that are common in e-
discovery, disappointment with such tools may lead lawyers
to be reluctant to embrace the use of all TAR. Moreover,
a number of myths and misconceptions about TAR appear
to be closely associated with SPL; notably, that seed and
training sets must be randomly selected to avoid “biasing”
the learning algorithm.

This study lends no support to the proposition that seed
or training sets must be random; to the contrary, keyword
seeding, uncertainty sampling, and, in particular, relevance
feedback – all non-random methods – improve significantly
(P < 0.01) upon random sampling.

While active-learning protocols employing uncertainty
sampling are clearly more effective than passive-learning
protocols, they tend to focus the reviewer’s attention on
marginal rather than legally significant documents. In ad-
dition, uncertainty sampling shares a fundamental weakness
with passive learning: the need to define and detect when
stabilization has occurred, so as to know when to stop train-
ing. In the legal context, this decision is fraught with risk, as
premature stabilization could result in insufficient recall and
undermine an attorney’s certification of having conducted a
reasonable search under (U.S.) Federal Rule of Civil Proce-
dure 26(g)(1)(B).

This study highlights an alternative approach – continu-
ous active learning with relevance feedback – that demon-
strates superior performance, while avoiding certain prob-
lems associated with uncertainty sampling and passive learn-
ing. CAL also offers the reviewer the opportunity to quickly
identify legally significant documents that can guide litiga-
tion strategy, and can readily adapt when new documents
are added to the collection, or new issues or interpretations
of relevance arise.

There is no reason to presume that the CAL results de-
scribed here represent the best that can be achieved. Any
number of feature engineering methods, learning algorithms,
training protocols, and search strategies might yield sub-
stantive improvements in the future. The effect of review
order and other human factors on training accuracy, and
thus overall review effectiveness, may also be substantial.
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Nevertheless, the experimental protocol, evaluation toolkit,
and results presented here provide a foundation for further
studies to investigate these and other possible approaches to
improve the state of the art in TAR for e-discovery.
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